mod bytes;
mod chain;
mod read;
mod read_exact;
mod read_to_end;
mod read_to_string;
mod read_vectored;
mod take;
use read::ReadFuture;
use read_exact::ReadExactFuture;
use read_to_end::{read_to_end_internal, ReadToEndFuture};
use read_to_string::ReadToStringFuture;
use read_vectored::ReadVectoredFuture;
use std::mem;
use crate::io::IoSliceMut;
pub use bytes::Bytes;
pub use chain::Chain;
pub use take::Take;
pub use futures_io::AsyncRead as Read;
#[doc = r#"
Extension methods for [`Read`].
[`Read`]: ../trait.Read.html
"#]
pub trait ReadExt: Read {
#[doc = r#"
Reads some bytes from the byte stream.
Returns the number of bytes read from the start of the buffer.
If the return value is `Ok(n)`, then it must be guaranteed that
`0 <= n <= buf.len()`. A nonzero `n` value indicates that the buffer has been
filled in with `n` bytes of data. If `n` is `0`, then it can indicate one of two
scenarios:
1. This reader has reached its "end of file" and will likely no longer be able to
produce bytes. Note that this does not mean that the reader will always no
longer be able to produce bytes.
2. The buffer specified was 0 bytes in length.
# Examples
```no_run
# fn main() -> std::io::Result<()> { async_std::task::block_on(async {
#
use async_std::fs::File;
use async_std::prelude::*;
let mut file = File::open("a.txt").await?;
let mut buf = vec![0; 1024];
let n = file.read(&mut buf).await?;
#
# Ok(()) }) }
```
"#]
fn read<'a>(
&'a mut self,
buf: &'a mut [u8],
) -> ReadFuture<'a, Self>
where
Self: Unpin
{
ReadFuture { reader: self, buf }
}
#[doc = r#"
Like [`read`], except that it reads into a slice of buffers.
Data is copied to fill each buffer in order, with the final buffer written to
possibly being only partially filled. This method must behave as a single call to
[`read`] with the buffers concatenated would.
The default implementation calls [`read`] with either the first nonempty buffer
provided, or an empty one if none exists.
[`read`]: #tymethod.read
"#]
fn read_vectored<'a>(
&'a mut self,
bufs: &'a mut [IoSliceMut<'a>],
) -> ReadVectoredFuture<'a, Self>
where
Self: Unpin,
{
ReadVectoredFuture { reader: self, bufs }
}
#[doc = r#"
Reads all bytes from the byte stream.
All bytes read from this stream will be appended to the specified buffer `buf`.
This function will continuously call [`read`] to append more data to `buf` until
[`read`] returns either `Ok(0)` or an error.
If successful, this function will return the total number of bytes read.
[`read`]: #tymethod.read
# Examples
```no_run
# fn main() -> std::io::Result<()> { async_std::task::block_on(async {
#
use async_std::fs::File;
use async_std::prelude::*;
let mut file = File::open("a.txt").await?;
let mut buf = Vec::new();
file.read_to_end(&mut buf).await?;
#
# Ok(()) }) }
```
"#]
fn read_to_end<'a>(
&'a mut self,
buf: &'a mut Vec<u8>,
) -> ReadToEndFuture<'a, Self>
where
Self: Unpin,
{
let start_len = buf.len();
ReadToEndFuture {
reader: self,
buf,
start_len,
}
}
#[doc = r#"
Reads all bytes from the byte stream and appends them into a string.
If successful, this function will return the number of bytes read.
If the data in this stream is not valid UTF-8 then an error will be returned and
`buf` will be left unmodified.
# Examples
```no_run
# fn main() -> std::io::Result<()> { async_std::task::block_on(async {
#
use async_std::fs::File;
use async_std::prelude::*;
let mut file = File::open("a.txt").await?;
let mut buf = String::new();
file.read_to_string(&mut buf).await?;
#
# Ok(()) }) }
```
"#]
fn read_to_string<'a>(
&'a mut self,
buf: &'a mut String,
) -> ReadToStringFuture<'a, Self>
where
Self: Unpin,
{
let start_len = buf.len();
ReadToStringFuture {
reader: self,
bytes: unsafe { mem::replace(buf.as_mut_vec(), Vec::new()) },
buf,
start_len,
}
}
#[doc = r#"
Reads the exact number of bytes required to fill `buf`.
This function reads as many bytes as necessary to completely fill the specified
buffer `buf`.
No guarantees are provided about the contents of `buf` when this function is
called, implementations cannot rely on any property of the contents of `buf` being
true. It is recommended that implementations only write data to `buf` instead of
reading its contents.
If this function encounters an "end of file" before completely filling the buffer,
it returns an error of the kind [`ErrorKind::UnexpectedEof`]. The contents of
`buf` are unspecified in this case.
If any other read error is encountered then this function immediately returns. The
contents of `buf` are unspecified in this case.
If this function returns an error, it is unspecified how many bytes it has read,
but it will never read more than would be necessary to completely fill the buffer.
[`ErrorKind::UnexpectedEof`]: enum.ErrorKind.html#variant.UnexpectedEof
# Examples
```no_run
# fn main() -> std::io::Result<()> { async_std::task::block_on(async {
#
use async_std::fs::File;
use async_std::prelude::*;
let mut file = File::open("a.txt").await?;
let mut buf = vec![0; 10];
file.read_exact(&mut buf).await?;
#
# Ok(()) }) }
```
"#]
fn read_exact<'a>(
&'a mut self,
buf: &'a mut [u8],
) -> ReadExactFuture<'a, Self>
where
Self: Unpin,
{
ReadExactFuture { reader: self, buf }
}
#[doc = r#"
Creates an adaptor which will read at most `limit` bytes from it.
This function returns a new instance of `Read` which will read at most
`limit` bytes, after which it will always return EOF ([`Ok(0)`]). Any
read errors will not count towards the number of bytes read and future
calls to [`read`] may succeed.
# Examples
[`File`]s implement `Read`:
[`File`]: ../fs/struct.File.html
[`Ok(0)`]: ../../std/result/enum.Result.html#variant.Ok
[`read`]: tymethod.read
```no_run
# fn main() -> std::io::Result<()> { async_std::task::block_on(async {
#
use async_std::io::prelude::*;
use async_std::fs::File;
let f = File::open("foo.txt").await?;
let mut buffer = [0; 5];
// read at most five bytes
let mut handle = f.take(5);
handle.read(&mut buffer).await?;
#
# Ok(()) }) }
```
"#]
fn take(self, limit: u64) -> Take<Self>
where
Self: Sized,
{
Take { inner: self, limit }
}
#[doc = r#"
Creates a "by reference" adaptor for this instance of `Read`.
The returned adaptor also implements `Read` and will simply borrow this
current reader.
# Examples
[`File`][file]s implement `Read`:
[file]: ../fs/struct.File.html
```no_run
# fn main() -> std::io::Result<()> { async_std::task::block_on(async {
#
use async_std::prelude::*;
use async_std::fs::File;
let mut f = File::open("foo.txt").await?;
let mut buffer = Vec::new();
let mut other_buffer = Vec::new();
{
let reference = f.by_ref();
// read at most 5 bytes
reference.take(5).read_to_end(&mut buffer).await?;
} // drop our &mut reference so we can use f again
// original file still usable, read the rest
f.read_to_end(&mut other_buffer).await?;
#
# Ok(()) }) }
```
"#]
fn by_ref(&mut self) -> &mut Self where Self: Sized { self }
#[doc = r#"
Transforms this `Read` instance to a `Stream` over its bytes.
The returned type implements `Stream` where the `Item` is
`Result<u8, io::Error>`.
The yielded item is `Ok` if a byte was successfully read and `Err`
otherwise. EOF is mapped to returning `None` from this iterator.
# Examples
[`File`][file]s implement `Read`:
[file]: ../fs/struct.File.html
```no_run
# fn main() -> std::io::Result<()> { async_std::task::block_on(async {
#
use async_std::prelude::*;
use async_std::fs::File;
let f = File::open("foo.txt").await?;
let mut s = f.bytes();
while let Some(byte) = s.next().await {
println!("{}", byte.unwrap());
}
#
# Ok(()) }) }
```
"#]
fn bytes(self) -> Bytes<Self> where Self: Sized {
Bytes { inner: self }
}
#[doc = r#"
Creates an adaptor which will chain this stream with another.
The returned `Read` instance will first read all bytes from this object
until EOF is encountered. Afterwards the output is equivalent to the
output of `next`.
# Examples
[`File`][file]s implement `Read`:
[file]: ../fs/struct.File.html
```no_run
# fn main() -> std::io::Result<()> { async_std::task::block_on(async {
#
use async_std::prelude::*;
use async_std::fs::File;
let f1 = File::open("foo.txt").await?;
let f2 = File::open("bar.txt").await?;
let mut handle = f1.chain(f2);
let mut buffer = String::new();
// read the value into a String. We could use any Read method here,
// this is just one example.
handle.read_to_string(&mut buffer).await?;
#
# Ok(()) }) }
```
"#]
fn chain<R: Read>(self, next: R) -> Chain<Self, R> where Self: Sized {
Chain { first: self, second: next, done_first: false }
}
}
impl<T: Read + ?Sized> ReadExt for T {}
#[inline]
unsafe fn initialize<R: futures_io::AsyncRead>(_reader: &R, buf: &mut [u8]) {
std::ptr::write_bytes(buf.as_mut_ptr(), 0, buf.len())
}
#[cfg(all(test, not(target_os = "unknown")))]
mod tests {
use crate::io;
use crate::prelude::*;
#[test]
fn test_read_by_ref() {
crate::task::block_on(async {
let mut f = io::Cursor::new(vec![0u8, 1, 2, 3, 4, 5, 6, 7, 8]);
let mut buffer = Vec::new();
let mut other_buffer = Vec::new();
{
let reference = f.by_ref();
assert_eq!(reference.take(5).read_to_end(&mut buffer).await.unwrap(), 5);
assert_eq!(&buffer, &[0, 1, 2, 3, 4])
} assert_eq!(f.read_to_end(&mut other_buffer).await.unwrap(), 4);
assert_eq!(&other_buffer, &[5, 6, 7, 8]);
});
}
}