1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
use super::RealArray;
use core::marker::PhantomData;
use core::mem::MaybeUninit;
/// A Ring Buffer of items
pub trait RingBuf {
/// The type of stored items inside the Ring Buffer
type Item;
/// Creates a new instance of the Ring Buffer
fn new() -> Self;
/// Creates a new instance of the Ring Buffer with the given capacity.
/// `RingBuf` implementations are allowed to ignore the `capacity` hint and
/// utilize their default capacity.
fn with_capacity(cap: usize) -> Self;
/// The capacity of the buffer
fn capacity(&self) -> usize;
/// The amount of stored items in the buffer
fn len(&self) -> usize;
/// Returns true if no item is stored inside the buffer.
fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns true if there is enough space in the buffer to
/// store another item.
fn can_push(&self) -> bool;
/// Stores the item at the end of the buffer.
/// Panics if there is not enough free space.
fn push(&mut self, item: Self::Item);
/// Returns the oldest item inside the buffer.
/// Panics if there is no available item.
fn pop(&mut self) -> Self::Item;
}
/// An array-backed Ring Buffer
///
/// `A` is the type of the backing array. The backing array must be a real
/// array. In order to verify this it must satisfy the [`RealArray`] constraint.
/// In order to create a Ring Buffer backed by an array of 5 integer elements,
/// the following code can be utilized:
///
/// ```
/// use futures_intrusive::buffer::{ArrayBuf, RingBuf};
///
/// type Buffer5 = ArrayBuf<i32, [i32; 5]>;
/// let buffer = Buffer5::new();
/// ```
pub struct ArrayBuf<T, A>
where
A: core::convert::AsMut<[T]> + core::convert::AsRef<[T]> + RealArray<T>,
{
buffer: MaybeUninit<A>,
size: usize,
recv_idx: usize,
send_idx: usize,
_phantom: PhantomData<T>,
}
impl<T, A> core::fmt::Debug for ArrayBuf<T, A>
where
A: core::convert::AsMut<[T]> + core::convert::AsRef<[T]> + RealArray<T>,
{
fn fmt(
&self,
f: &mut core::fmt::Formatter,
) -> Result<(), core::fmt::Error> {
f.debug_struct("ArrayBuf")
.field("size", &self.size)
.field("cap", &self.capacity())
.finish()
}
}
impl<T, A> ArrayBuf<T, A>
where
A: core::convert::AsMut<[T]> + core::convert::AsRef<[T]> + RealArray<T>,
{
fn next_idx(&mut self, last_idx: usize) -> usize {
if last_idx + 1 == self.capacity() {
return 0;
}
last_idx + 1
}
}
impl<T, A> RingBuf for ArrayBuf<T, A>
where
A: core::convert::AsMut<[T]> + core::convert::AsRef<[T]> + RealArray<T>,
{
type Item = T;
fn new() -> Self {
ArrayBuf {
buffer: MaybeUninit::uninit(),
send_idx: 0,
recv_idx: 0,
size: 0,
_phantom: PhantomData,
}
}
fn with_capacity(_cap: usize) -> Self {
// The fixed size array backed Ring Buffer doesn't support an adjustable
// capacity. Therefore only the default capacity is utilized.
Self::new()
}
#[inline]
fn capacity(&self) -> usize {
A::LEN
}
#[inline]
fn len(&self) -> usize {
self.size
}
#[inline]
fn can_push(&self) -> bool {
self.len() != self.capacity()
}
#[inline]
fn push(&mut self, value: Self::Item) {
assert!(self.can_push());
// Safety: We asserted that there is available space for an item.
// Therefore the memory address is valid.
unsafe {
let arr_ptr = self.buffer.as_mut_ptr() as *mut T;
arr_ptr.add(self.send_idx).write(value);
}
self.send_idx = self.next_idx(self.send_idx);
self.size += 1;
}
#[inline]
fn pop(&mut self) -> Self::Item {
assert!(self.size > 0);
// Safety: We asserted that there is an element available, so it must
// have been written before.
let val = unsafe {
let arr_ptr = self.buffer.as_mut_ptr() as *mut T;
arr_ptr.add(self.recv_idx).read()
};
self.recv_idx = self.next_idx(self.recv_idx);
self.size -= 1;
val
}
}
impl<T, A> Drop for ArrayBuf<T, A>
where
A: core::convert::AsMut<[T]> + core::convert::AsRef<[T]> + RealArray<T>,
{
fn drop(&mut self) {
// Drop all elements which are still stored inside the buffer
while self.size > 0 {
// Safety: This drops only as many elements as have been written via
// ptr::write and haven't read via ptr::read before
unsafe {
let arr_ptr = self.buffer.as_mut_ptr() as *mut T;
arr_ptr.add(self.recv_idx).drop_in_place();
}
self.recv_idx = self.next_idx(self.recv_idx);
self.size -= 1;
}
}
}
#[cfg(feature = "alloc")]
mod if_alloc {
use super::*;
use alloc::collections::VecDeque;
/// A Ring Buffer which stores all items on the heap.
///
/// The `FixedHeapBuf` will allocate its capacity ahead of time. This is good
/// fit when you have a constant latency between two components.
pub struct FixedHeapBuf<T> {
buffer: VecDeque<T>,
/// The capacity is stored extra, since VecDeque can allocate space for
/// more elements than specified.
cap: usize,
}
impl<T> core::fmt::Debug for FixedHeapBuf<T> {
fn fmt(
&self,
f: &mut core::fmt::Formatter,
) -> Result<(), core::fmt::Error> {
f.debug_struct("FixedHeapBuf")
.field("size", &self.buffer.len())
.field("cap", &self.cap)
.finish()
}
}
impl<T> RingBuf for FixedHeapBuf<T> {
type Item = T;
fn new() -> Self {
FixedHeapBuf {
buffer: VecDeque::new(),
cap: 0,
}
}
fn with_capacity(cap: usize) -> Self {
FixedHeapBuf {
buffer: VecDeque::with_capacity(cap),
cap,
}
}
#[inline]
fn capacity(&self) -> usize {
self.cap
}
#[inline]
fn len(&self) -> usize {
self.buffer.len()
}
#[inline]
fn can_push(&self) -> bool {
self.buffer.len() != self.cap
}
#[inline]
fn push(&mut self, value: Self::Item) {
assert!(self.can_push());
self.buffer.push_back(value);
}
#[inline]
fn pop(&mut self) -> Self::Item {
assert!(self.buffer.len() > 0);
self.buffer.pop_front().unwrap()
}
}
/// A Ring Buffer which stores all items on the heap but grows dynamically.
///
/// A `GrowingHeapBuf` does not allocate the capacity ahead of time, as
/// opposed to the `FixedHeapBuf`. This makes it a good fit when you have
/// unpredictable latency between two components, when you want to
/// amortize your allocation costs or when you are using an external
/// back-pressure mechanism.
pub struct GrowingHeapBuf<T> {
buffer: VecDeque<T>,
/// The maximum number of elements in the buffer.
limit: usize,
}
impl<T> core::fmt::Debug for GrowingHeapBuf<T> {
fn fmt(
&self,
f: &mut core::fmt::Formatter,
) -> Result<(), core::fmt::Error> {
f.debug_struct("GrowingHeapBuf")
.field("size", &self.buffer.len())
.field("limit", &self.limit)
.finish()
}
}
impl<T> RingBuf for GrowingHeapBuf<T> {
type Item = T;
fn new() -> Self {
GrowingHeapBuf {
buffer: VecDeque::new(),
limit: 0,
}
}
fn with_capacity(limit: usize) -> Self {
GrowingHeapBuf {
buffer: VecDeque::new(),
limit,
}
}
#[inline]
fn capacity(&self) -> usize {
self.limit
}
#[inline]
fn len(&self) -> usize {
self.buffer.len()
}
#[inline]
fn can_push(&self) -> bool {
self.buffer.len() != self.limit
}
#[inline]
fn push(&mut self, value: Self::Item) {
debug_assert!(self.can_push());
self.buffer.push_back(value);
}
#[inline]
fn pop(&mut self) -> Self::Item {
debug_assert!(self.buffer.len() > 0);
self.buffer.pop_front().unwrap()
}
}
}
#[cfg(feature = "alloc")]
pub use if_alloc::*;
#[cfg(test)]
#[cfg(feature = "alloc")]
mod tests {
use super::*;
use crate::buffer::ring_buffer::if_alloc::FixedHeapBuf;
fn test_ring_buf<Buf: RingBuf<Item = u32>>(mut buf: Buf) {
assert_eq!(5, buf.capacity());
assert_eq!(0, buf.len());
assert_eq!(true, buf.is_empty());
assert_eq!(true, buf.can_push());
buf.push(1);
buf.push(2);
buf.push(3);
assert_eq!(5, buf.capacity());
assert_eq!(3, buf.len());
assert_eq!(false, buf.is_empty());
assert_eq!(true, buf.can_push());
assert_eq!(1, buf.pop());
assert_eq!(2, buf.pop());
assert_eq!(1, buf.len());
assert_eq!(false, buf.is_empty());
assert_eq!(3, buf.pop());
assert_eq!(0, buf.len());
assert_eq!(true, buf.is_empty());
for (i, val) in [4, 5, 6, 7, 8].iter().enumerate() {
buf.push(*val);
assert_eq!(i + 1, buf.len());
assert_eq!(i != 4, buf.can_push());
assert_eq!(false, buf.is_empty());
}
for (i, val) in [4, 5, 6, 7, 8].iter().enumerate() {
assert_eq!(*val, buf.pop());
assert_eq!(4 - i, buf.len());
assert_eq!(true, buf.can_push());
assert_eq!(i == 4, buf.is_empty());
}
}
#[test]
fn test_array_ring_buf() {
let buf = ArrayBuf::<u32, [u32; 5]>::new();
test_ring_buf(buf);
}
#[test]
fn test_heap_ring_buf() {
let buf = FixedHeapBuf::<u32>::with_capacity(5);
test_ring_buf(buf);
}
#[test]
fn test_growing_ring_buf() {
let buf = GrowingHeapBuf::<u32>::with_capacity(5);
test_ring_buf(buf);
}
}