1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
use alloc::vec;
use digest::DynDigest;
use num_bigint::traits::ModInverse;
use num_bigint::{BigUint, RandPrime};
#[allow(unused_imports)]
use num_traits::Float;
use num_traits::{FromPrimitive, One, Zero};
use rand_core::{CryptoRng, RngCore};
use crate::errors::{Error, Result};
use crate::key::RsaPrivateKey;
/// Default exponent for RSA keys.
const EXP: u64 = 65537;
/// Generates a multi-prime RSA keypair of the given bit size,
/// and the given random source, as suggested in [1]. Although the public
/// keys are compatible (actually, indistinguishable) from the 2-prime case,
/// the private keys are not. Thus it may not be possible to export multi-prime
/// private keys in certain formats or to subsequently import them into other
/// code.
///
/// Uses default public key exponent of `65537`. If you want to use a custom
/// public key exponent value, use `algorithms::generate_multi_prime_key_with_exp`
/// instead.
///
/// Table 1 in [2] suggests maximum numbers of primes for a given size.
///
/// [1]: https://patents.google.com/patent/US4405829A/en
/// [2]: https://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
pub fn generate_multi_prime_key<R: RngCore + CryptoRng>(
rng: &mut R,
nprimes: usize,
bit_size: usize,
) -> Result<RsaPrivateKey> {
let exp = BigUint::from_u64(EXP).expect("invalid static exponent");
generate_multi_prime_key_with_exp(rng, nprimes, bit_size, &exp)
}
/// Generates a multi-prime RSA keypair of the given bit size, public exponent,
/// and the given random source, as suggested in [1]. Although the public
/// keys are compatible (actually, indistinguishable) from the 2-prime case,
/// the private keys are not. Thus it may not be possible to export multi-prime
/// private keys in certain formats or to subsequently import them into other
/// code.
///
/// Table 1 in [2] suggests maximum numbers of primes for a given size.
///
/// [1]: https://patents.google.com/patent/US4405829A/en
/// [2]: http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
pub fn generate_multi_prime_key_with_exp<R: RngCore + CryptoRng>(
rng: &mut R,
nprimes: usize,
bit_size: usize,
exp: &BigUint,
) -> Result<RsaPrivateKey> {
if nprimes < 2 {
return Err(Error::NprimesTooSmall);
}
if bit_size < 64 {
let prime_limit = (1u64 << (bit_size / nprimes) as u64) as f64;
// pi aproximates the number of primes less than prime_limit
let mut pi = prime_limit / (prime_limit.ln() - 1f64);
// Generated primes start with 0b11, so we can only use a quarter of them.
pi /= 4f64;
// Use a factor of two to ensure taht key generation terminates in a
// reasonable amount of time.
pi /= 2f64;
if pi < nprimes as f64 {
return Err(Error::TooFewPrimes);
}
}
let mut primes = vec![BigUint::zero(); nprimes];
let n_final: BigUint;
let d_final: BigUint;
'next: loop {
let mut todo = bit_size;
// `gen_prime` should set the top two bits in each prime.
// Thus each prime has the form
// p_i = 2^bitlen(p_i) × 0.11... (in base 2).
// And the product is:
// P = 2^todo × α
// where α is the product of nprimes numbers of the form 0.11...
//
// If α < 1/2 (which can happen for nprimes > 2), we need to
// shift todo to compensate for lost bits: the mean value of 0.11...
// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
// will give good results.
if nprimes >= 7 {
todo += (nprimes - 2) / 5;
}
for (i, prime) in primes.iter_mut().enumerate() {
*prime = rng.gen_prime(todo / (nprimes - i));
todo -= prime.bits();
}
// Makes sure that primes is pairwise unequal.
for (i, prime1) in primes.iter().enumerate() {
for prime2 in primes.iter().take(i) {
if prime1 == prime2 {
continue 'next;
}
}
}
let mut n = BigUint::one();
let mut totient = BigUint::one();
for prime in &primes {
n *= prime;
totient *= prime - BigUint::one();
}
if n.bits() != bit_size {
// This should never happen for nprimes == 2 because
// gen_prime should set the top two bits in each prime.
// For nprimes > 2 we hope it does not happen often.
continue 'next;
}
if let Some(d) = exp.mod_inverse(totient) {
n_final = n;
d_final = d.to_biguint().unwrap();
break;
}
}
Ok(RsaPrivateKey::from_components(
n_final,
exp.clone(),
d_final,
primes,
))
}
/// Mask generation function.
///
/// Panics if out is larger than 2**32. This is in accordance with RFC 8017 - PKCS #1 B.2.1
pub fn mgf1_xor(out: &mut [u8], digest: &mut dyn DynDigest, seed: &[u8]) {
let mut counter = [0u8; 4];
let mut i = 0;
const MAX_LEN: u64 = core::u32::MAX as u64 + 1;
assert!(out.len() as u64 <= MAX_LEN);
while i < out.len() {
let mut digest_input = vec![0u8; seed.len() + 4];
digest_input[0..seed.len()].copy_from_slice(seed);
digest_input[seed.len()..].copy_from_slice(&counter);
digest.update(digest_input.as_slice());
let digest_output = &*digest.finalize_reset();
let mut j = 0;
loop {
if j >= digest_output.len() || i >= out.len() {
break;
}
out[i] ^= digest_output[j];
j += 1;
i += 1;
}
inc_counter(&mut counter);
}
}
fn inc_counter(counter: &mut [u8; 4]) {
for i in (0..4).rev() {
counter[i] = counter[i].wrapping_add(1);
if counter[i] != 0 {
// No overflow
return;
}
}
}