1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
use alloc::vec;
use alloc::vec::Vec;
use digest::DynDigest;
use rand_core::{CryptoRng, RngCore};
use subtle::ConstantTimeEq;
use crate::algorithms::mgf1_xor;
use crate::errors::{Error, Result};
use crate::key::{PrivateKey, PublicKey};
pub fn verify<PK: PublicKey>(
pub_key: &PK,
hashed: &[u8],
sig: &[u8],
digest: &mut dyn DynDigest,
) -> Result<()> {
if sig.len() != pub_key.size() {
return Err(Error::Verification);
}
let em_bits = pub_key.n().bits() - 1;
let em_len = (em_bits + 7) / 8;
let mut em = pub_key.raw_encryption_primitive(sig, em_len)?;
emsa_pss_verify(hashed, &mut em, em_bits, None, digest)
}
/// SignPSS calculates the signature of hashed using RSASSA-PSS [1].
/// Note that hashed must be the result of hashing the input message using the
/// given hash function. The opts argument may be nil, in which case sensible
/// defaults are used.
// TODO: bind T with the CryptoRng trait
pub fn sign<T: RngCore + ?Sized, S: CryptoRng + RngCore, SK: PrivateKey>(
rng: &mut T,
blind_rng: Option<&mut S>,
priv_key: &SK,
hashed: &[u8],
salt_len: Option<usize>,
digest: &mut dyn DynDigest,
) -> Result<Vec<u8>> {
let salt_len = salt_len.unwrap_or_else(|| priv_key.size() - 2 - digest.output_size());
let mut salt = vec![0; salt_len];
rng.fill_bytes(&mut salt[..]);
sign_pss_with_salt(blind_rng, priv_key, hashed, &salt, digest)
}
/// signPSSWithSalt calculates the signature of hashed using PSS [1] with specified salt.
/// Note that hashed must be the result of hashing the input message using the
/// given hash function. salt is a random sequence of bytes whose length will be
/// later used to verify the signature.
fn sign_pss_with_salt<T: CryptoRng + RngCore, SK: PrivateKey>(
blind_rng: Option<&mut T>,
priv_key: &SK,
hashed: &[u8],
salt: &[u8],
digest: &mut dyn DynDigest,
) -> Result<Vec<u8>> {
let em_bits = priv_key.n().bits() - 1;
let em = emsa_pss_encode(hashed, em_bits, salt, digest)?;
priv_key.raw_decryption_primitive(blind_rng, &em, priv_key.size())
}
fn emsa_pss_encode(
m_hash: &[u8],
em_bits: usize,
salt: &[u8],
hash: &mut dyn DynDigest,
) -> Result<Vec<u8>> {
// See [1], section 9.1.1
let h_len = hash.output_size();
let s_len = salt.len();
let em_len = (em_bits + 7) / 8;
// 1. If the length of M is greater than the input limitation for the
// hash function (2^61 - 1 octets for SHA-1), output "message too
// long" and stop.
//
// 2. Let mHash = Hash(M), an octet string of length hLen.
if m_hash.len() != h_len {
return Err(Error::InputNotHashed);
}
// 3. If em_len < h_len + s_len + 2, output "encoding error" and stop.
if em_len < h_len + s_len + 2 {
// TODO: Key size too small
return Err(Error::Internal);
}
let mut em = vec![0; em_len];
let (db, h) = em.split_at_mut(em_len - h_len - 1);
let h = &mut h[..(em_len - 1) - db.len()];
// 4. Generate a random octet string salt of length s_len; if s_len = 0,
// then salt is the empty string.
//
// 5. Let
// M' = (0x)00 00 00 00 00 00 00 00 || m_hash || salt;
//
// M' is an octet string of length 8 + h_len + s_len with eight
// initial zero octets.
//
// 6. Let H = Hash(M'), an octet string of length h_len.
let prefix = [0u8; 8];
hash.update(&prefix);
hash.update(m_hash);
hash.update(salt);
let hashed = hash.finalize_reset();
h.copy_from_slice(&hashed);
// 7. Generate an octet string PS consisting of em_len - s_len - h_len - 2
// zero octets. The length of PS may be 0.
//
// 8. Let DB = PS || 0x01 || salt; DB is an octet string of length
// emLen - hLen - 1.
db[em_len - s_len - h_len - 2] = 0x01;
db[em_len - s_len - h_len - 1..].copy_from_slice(salt);
// 9. Let dbMask = MGF(H, emLen - hLen - 1).
//
// 10. Let maskedDB = DB \xor dbMask.
mgf1_xor(db, hash, &h);
// 11. Set the leftmost 8 * em_len - em_bits bits of the leftmost octet in
// maskedDB to zero.
db[0] &= 0xFF >> (8 * em_len - em_bits);
// 12. Let EM = maskedDB || H || 0xbc.
em[em_len - 1] = 0xBC;
Ok(em)
}
fn emsa_pss_verify(
m_hash: &[u8],
em: &mut [u8],
em_bits: usize,
s_len: Option<usize>,
hash: &mut dyn DynDigest,
) -> Result<()> {
// 1. If the length of M is greater than the input limitation for the
// hash function (2^61 - 1 octets for SHA-1), output "inconsistent"
// and stop.
//
// 2. Let mHash = Hash(M), an octet string of length hLen
let h_len = hash.output_size();
if m_hash.len() != h_len {
return Err(Error::Verification);
}
// 3. If emLen < hLen + sLen + 2, output "inconsistent" and stop.
let em_len = em.len(); //(em_bits + 7) / 8;
if em_len < h_len + s_len.unwrap_or_default() + 2 {
return Err(Error::Verification);
}
// 4. If the rightmost octet of EM does not have hexadecimal value
// 0xbc, output "inconsistent" and stop.
if em[em.len() - 1] != 0xBC {
return Err(Error::Verification);
}
// 5. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and
// let H be the next hLen octets.
let (db, h) = em.split_at_mut(em_len - h_len - 1);
let h = &mut h[..h_len];
// 6. If the leftmost 8 * em_len - em_bits bits of the leftmost octet in
// maskedDB are not all equal to zero, output "inconsistent" and
// stop.
if db[0] & (0xFF << /*uint*/(8 - (8 * em_len - em_bits))) != 0 {
return Err(Error::Verification);
}
// 7. Let dbMask = MGF(H, em_len - h_len - 1)
//
// 8. Let DB = maskedDB \xor dbMask
mgf1_xor(db, hash, &*h);
// 9. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in DB
// to zero.
db[0] &= 0xFF >> /*uint*/(8 * em_len - em_bits);
let s_len = match s_len {
None => (0..=em_len - (h_len + 2))
.rev()
.try_fold(None, |state, i| match (state, db[em_len - h_len - i - 2]) {
(Some(i), _) => Ok(Some(i)),
(_, 1) => Ok(Some(i)),
(_, 0) => Ok(None),
_ => Err(Error::Verification),
})?
.ok_or(Error::Verification)?,
Some(s_len) => {
// 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero
// or if the octet at position emLen - hLen - sLen - 1 (the leftmost
// position is "position 1") does not have hexadecimal value 0x01,
// output "inconsistent" and stop.
let (zeroes, rest) = db.split_at(em_len - h_len - s_len - 2);
if zeroes.iter().any(|e| *e != 0x00) || rest[0] != 0x01 {
return Err(Error::Verification);
}
s_len
}
};
// 11. Let salt be the last s_len octets of DB.
let salt = &db[db.len() - s_len..];
// 12. Let
// M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ;
// M' is an octet string of length 8 + hLen + sLen with eight
// initial zero octets.
//
// 13. Let H' = Hash(M'), an octet string of length hLen.
let prefix = [0u8; 8];
hash.update(&prefix[..]);
hash.update(m_hash);
hash.update(salt);
let h0 = hash.finalize_reset();
// 14. If H = H', output "consistent." Otherwise, output "inconsistent."
if h0.ct_eq(h).into() {
Ok(())
} else {
Err(Error::Verification)
}
}
#[cfg(test)]
mod test {
use crate::{PaddingScheme, PublicKey, RsaPrivateKey, RsaPublicKey};
use hex_literal::hex;
use num_bigint::BigUint;
use num_traits::{FromPrimitive, Num};
use rand_chacha::{rand_core::SeedableRng, ChaCha8Rng};
use sha1::{Digest, Sha1};
fn get_private_key() -> RsaPrivateKey {
// In order to generate new test vectors you'll need the PEM form of this key:
// -----BEGIN RSA PRIVATE KEY-----
// MIIBOgIBAAJBALKZD0nEffqM1ACuak0bijtqE2QrI/KLADv7l3kK3ppMyCuLKoF0
// fd7Ai2KW5ToIwzFofvJcS/STa6HA5gQenRUCAwEAAQJBAIq9amn00aS0h/CrjXqu
// /ThglAXJmZhOMPVn4eiu7/ROixi9sex436MaVeMqSNf7Ex9a8fRNfWss7Sqd9eWu
// RTUCIQDasvGASLqmjeffBNLTXV2A5g4t+kLVCpsEIZAycV5GswIhANEPLmax0ME/
// EO+ZJ79TJKN5yiGBRsv5yvx5UiHxajEXAiAhAol5N4EUyq6I9w1rYdhPMGpLfk7A
// IU2snfRJ6Nq2CQIgFrPsWRCkV+gOYcajD17rEqmuLrdIRexpg8N1DOSXoJ8CIGlS
// tAboUGBxTDq3ZroNism3DaMIbKPyYrAqhKov1h5V
// -----END RSA PRIVATE KEY-----
RsaPrivateKey::from_components(
BigUint::from_str_radix("9353930466774385905609975137998169297361893554149986716853295022578535724979677252958524466350471210367835187480748268864277464700638583474144061408845077", 10).unwrap(),
BigUint::from_u64(65537).unwrap(),
BigUint::from_str_radix("7266398431328116344057699379749222532279343923819063639497049039389899328538543087657733766554155839834519529439851673014800261285757759040931985506583861", 10).unwrap(),
vec![
BigUint::from_str_radix("98920366548084643601728869055592650835572950932266967461790948584315647051443",10).unwrap(),
BigUint::from_str_radix("94560208308847015747498523884063394671606671904944666360068158221458669711639", 10).unwrap()
],
)
}
#[test]
fn test_verify_pss() {
let priv_key = get_private_key();
let tests = [(
"test\n",
hex!(
"6f86f26b14372b2279f79fb6807c49889835c204f71e38249b4c5601462da8ae"
"30f26ffdd9c13f1c75eee172bebe7b7c89f2f1526c722833b9737d6c172a962f"
),
)];
let pub_key: RsaPublicKey = priv_key.into();
for (text, sig) in &tests {
let digest = Sha1::digest(text.as_bytes()).to_vec();
let rng = ChaCha8Rng::from_seed([42; 32]);
pub_key
.verify(PaddingScheme::new_pss::<Sha1, _>(rng), &digest, sig)
.expect("failed to verify");
}
}
#[test]
fn test_sign_and_verify_roundtrip() {
let priv_key = get_private_key();
let tests = ["test\n"];
let rng = ChaCha8Rng::from_seed([42; 32]);
for test in &tests {
let digest = Sha1::digest(test.as_bytes()).to_vec();
let sig = priv_key
.sign_blinded(
&mut rng.clone(),
PaddingScheme::new_pss::<Sha1, _>(rng.clone()),
&digest,
)
.expect("failed to sign");
priv_key
.verify(
PaddingScheme::new_pss::<Sha1, _>(rng.clone()),
&digest,
&sig,
)
.expect("failed to verify");
}
}
}