1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
//! An intrusive double linked list of data
use core::{
marker::PhantomPinned,
ops::{Deref, DerefMut},
ptr::NonNull,
};
/// A node which carries data of type `T` and is stored in an intrusive list
#[derive(Debug)]
pub struct ListNode<T> {
/// The previous node in the list. `None` if there is no previous node.
prev: Option<NonNull<ListNode<T>>>,
/// The next node in the list. `None` if there is no previous node.
next: Option<NonNull<ListNode<T>>>,
/// The data which is associated to this list item
data: T,
/// Prevents `ListNode`s from being `Unpin`. They may never be moved, since
/// the list semantics require addresses to be stable.
_pin: PhantomPinned,
}
impl<T> ListNode<T> {
/// Creates a new node with the associated data
pub fn new(data: T) -> ListNode<T> {
ListNode::<T> {
prev: None,
next: None,
data,
_pin: PhantomPinned,
}
}
}
impl<T> Deref for ListNode<T> {
type Target = T;
fn deref(&self) -> &T {
&self.data
}
}
impl<T> DerefMut for ListNode<T> {
fn deref_mut(&mut self) -> &mut T {
&mut self.data
}
}
/// An intrusive linked list of nodes, where each node carries associated data
/// of type `T`.
#[derive(Debug)]
pub struct LinkedList<T> {
head: Option<NonNull<ListNode<T>>>,
tail: Option<NonNull<ListNode<T>>>,
}
impl<T> LinkedList<T> {
/// Creates an empty linked list
pub fn new() -> Self {
LinkedList::<T> {
head: None,
tail: None,
}
}
/// Adds a node at the front of the linked list.
/// Safety: This function is only safe as long as `node` is guaranteed to
/// get removed from the list before it gets moved or dropped.
/// In addition to this `node` may not be added to another other list before
/// it is removed from the current one.
pub unsafe fn add_front(&mut self, node: &mut ListNode<T>) {
node.next = self.head;
node.prev = None;
match self.head {
Some(mut head) => head.as_mut().prev = Some(node.into()),
None => {}
};
self.head = Some(node.into());
if self.tail.is_none() {
self.tail = Some(node.into());
}
}
/// Returns a reference to the first node in the linked list
/// The function is only safe as long as valid pointers are stored inside
/// the linked list.
/// The returned pointer is only guaranteed to be valid as long as the list
/// is not mutated
pub fn peek_first(&self) -> Option<&ListNode<T>> {
// Safety: When the node was inserted it was promised that it is alive
// until it gets removed from the list.
// The returned node has a pointer which constrains it to the lifetime
// of the list. This is ok, since the Node is supposed to outlive
// its insertion in the list.
unsafe {
self.head
.map(|node| &*(node.as_ptr() as *const ListNode<T>))
}
}
/// Returns a mutable reference to the first node in the linked list
/// The function is only safe as long as valid pointers are stored inside
/// the linked list.
/// The returned pointer is only guaranteed to be valid as long as the list
/// is not mutated
pub fn peek_first_mut(&mut self) -> Option<&mut ListNode<T>> {
// Safety: When the node was inserted it was promised that it is alive
// until it gets removed from the list.
// The returned node has a pointer which constrains it to the lifetime
// of the list. This is ok, since the Node is supposed to outlive
// its insertion in the list.
unsafe {
self.head
.map(|mut node| &mut *(node.as_mut() as *mut ListNode<T>))
}
}
/// Returns a reference to the last node in the linked list
/// The function is only safe as long as valid pointers are stored inside
/// the linked list.
/// The returned pointer is only guaranteed to be valid as long as the list
/// is not mutated
pub fn peek_last(&self) -> Option<&ListNode<T>> {
// Safety: When the node was inserted it was promised that it is alive
// until it gets removed from the list.
// The returned node has a pointer which constrains it to the lifetime
// of the list. This is ok, since the Node is supposed to outlive
// its insertion in the list.
unsafe {
self.tail
.map(|node| &*(node.as_ptr() as *const ListNode<T>))
}
}
/// Returns a mutable reference to the last node in the linked list
/// The function is only safe as long as valid pointers are stored inside
/// the linked list.
/// The returned pointer is only guaranteed to be valid as long as the list
/// is not mutated
pub fn peek_last_mut(&mut self) -> Option<&mut ListNode<T>> {
// Safety: When the node was inserted it was promised that it is alive
// until it gets removed from the list.
// The returned node has a pointer which constrains it to the lifetime
// of the list. This is ok, since the Node is supposed to outlive
// its insertion in the list.
unsafe {
self.tail
.map(|mut node| &mut *(node.as_mut() as *mut ListNode<T>))
}
}
/// Removes the first node from the linked list
pub fn remove_first(&mut self) -> Option<&mut ListNode<T>> {
// Safety: When the node was inserted it was promised that it is alive
// until it gets removed from the list
unsafe {
let mut head = self.head?;
self.head = head.as_mut().next;
let first_ref = head.as_mut();
match first_ref.next {
None => {
// This was the only node in the list
debug_assert_eq!(Some(first_ref.into()), self.tail);
self.tail = None;
}
Some(mut next) => {
next.as_mut().prev = None;
}
}
first_ref.prev = None;
first_ref.next = None;
Some(&mut *(first_ref as *mut ListNode<T>))
}
}
/// Removes the last node from the linked list and returns it
pub fn remove_last(&mut self) -> Option<&mut ListNode<T>> {
// Safety: When the node was inserted it was promised that it is alive
// until it gets removed from the list
unsafe {
let mut tail = self.tail?;
self.tail = tail.as_mut().prev;
let last_ref = tail.as_mut();
match last_ref.prev {
None => {
// This was the last node in the list
debug_assert_eq!(Some(last_ref.into()), self.head);
self.head = None;
}
Some(mut prev) => {
prev.as_mut().next = None;
}
}
last_ref.prev = None;
last_ref.next = None;
Some(&mut *(last_ref as *mut ListNode<T>))
}
}
/// Returns whether the linked list doesn not contain any node
pub fn is_empty(&self) -> bool {
if !self.head.is_none() {
return false;
}
debug_assert!(self.tail.is_none());
true
}
/// Removes the given `node` from the linked list.
/// Returns whether the `node` was removed.
/// It is also only save if it is known that the `node` is either part of this
/// list, or of no list at all. If `node` is part of another list, the
/// behavior is undefined.
pub unsafe fn remove(&mut self, node: &mut ListNode<T>) -> bool {
match node.prev {
None => {
// This might be the first node in the list. If it is not, the
// node is not in the list at all. Since our precondition is that
// the node must either be in this list or in no list, we check that
// the node is really in no list.
if self.head != Some(node.into()) {
debug_assert!(node.next.is_none());
return false;
}
self.head = node.next;
}
Some(mut prev) => {
debug_assert_eq!(prev.as_ref().next, Some(node.into()));
prev.as_mut().next = node.next;
}
}
match node.next {
None => {
// This must be the last node in our list. Otherwise the list
// is inconsistent.
debug_assert_eq!(self.tail, Some(node.into()));
self.tail = node.prev;
}
Some(mut next) => {
debug_assert_eq!(next.as_mut().prev, Some(node.into()));
next.as_mut().prev = node.prev;
}
}
node.next = None;
node.prev = None;
true
}
/// Drains the list iby calling a callback on each list node
///
/// The method does not return an iterator since stopping or deferring
/// draining the list is not permitted. If the method would push nodes to
/// an iterator we could not guarantee that the nodes do not get utilized
/// after having been removed from the list anymore.
pub fn drain<F>(&mut self, mut func: F)
where
F: FnMut(&mut ListNode<T>),
{
let mut current = self.head;
self.head = None;
self.tail = None;
while let Some(mut node) = current {
// Safety: The nodes have not been removed from the list yet and must
// therefore contain valid data. The nodes can also not be added to
// the list again during iteration, since the list is mutably borrowed.
unsafe {
let node_ref = node.as_mut();
current = node_ref.next;
node_ref.next = None;
node_ref.prev = None;
// Note: We do not reset the pointers from the next element in the
// list to the current one since we will iterate over the whole
// list anyway, and therefore clean up all pointers.
func(node_ref);
}
}
}
/// Drains the list in reverse order by calling a callback on each list node
///
/// The method does not return an iterator since stopping or deferring
/// draining the list is not permitted. If the method would push nodes to
/// an iterator we could not guarantee that the nodes do not get utilized
/// after having been removed from the list anymore.
pub fn reverse_drain<F>(&mut self, mut func: F)
where
F: FnMut(&mut ListNode<T>),
{
let mut current = self.tail;
self.head = None;
self.tail = None;
while let Some(mut node) = current {
// Safety: The nodes have not been removed from the list yet and must
// therefore contain valid data. The nodes can also not be added to
// the list again during iteration, since the list is mutably borrowed.
unsafe {
let node_ref = node.as_mut();
current = node_ref.prev;
node_ref.next = None;
node_ref.prev = None;
// Note: We do not reset the pointers from the next element in the
// list to the current one since we will iterate over the whole
// list anyway, and therefore clean up all pointers.
func(node_ref);
}
}
}
}
#[cfg(all(test, feature = "alloc"))] // Tests make use of Vec at the moment
mod tests {
use super::*;
use alloc::vec::Vec;
fn collect_list<T: Copy>(mut list: LinkedList<T>) -> Vec<T> {
let mut result = Vec::new();
list.drain(|node| {
result.push(**node);
});
result
}
fn collect_reverse_list<T: Copy>(mut list: LinkedList<T>) -> Vec<T> {
let mut result = Vec::new();
list.reverse_drain(|node| {
result.push(**node);
});
result
}
unsafe fn add_nodes(
list: &mut LinkedList<i32>,
nodes: &mut [&mut ListNode<i32>],
) {
for node in nodes.iter_mut() {
list.add_front(node);
}
}
unsafe fn assert_clean<T>(node: &mut ListNode<T>) {
assert!(node.next.is_none());
assert!(node.prev.is_none());
}
#[test]
fn insert_and_iterate() {
unsafe {
let mut a = ListNode::new(5);
let mut b = ListNode::new(7);
let mut c = ListNode::new(31);
let mut setup = |list: &mut LinkedList<i32>| {
assert_eq!(true, list.is_empty());
list.add_front(&mut c);
assert_eq!(31, **list.peek_first().unwrap());
assert_eq!(false, list.is_empty());
list.add_front(&mut b);
assert_eq!(7, **list.peek_first().unwrap());
list.add_front(&mut a);
assert_eq!(5, **list.peek_first().unwrap());
};
let mut list = LinkedList::new();
setup(&mut list);
let items: Vec<i32> = collect_list(list);
assert_eq!([5, 7, 31].to_vec(), items);
let mut list = LinkedList::new();
setup(&mut list);
let items: Vec<i32> = collect_reverse_list(list);
assert_eq!([31, 7, 5].to_vec(), items);
}
}
#[test]
fn drain_and_collect() {
unsafe {
let mut a = ListNode::new(5);
let mut b = ListNode::new(7);
let mut c = ListNode::new(31);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
let taken_items: Vec<i32> = collect_list(list);
assert_eq!([5, 7, 31].to_vec(), taken_items);
}
}
#[test]
fn peek_last() {
unsafe {
let mut a = ListNode::new(5);
let mut b = ListNode::new(7);
let mut c = ListNode::new(31);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
let last = list.peek_last();
assert_eq!(31, **last.unwrap());
list.remove_last();
let last = list.peek_last();
assert_eq!(7, **last.unwrap());
list.remove_last();
let last = list.peek_last();
assert_eq!(5, **last.unwrap());
list.remove_last();
let last = list.peek_last();
assert!(last.is_none());
}
}
#[test]
fn remove_first() {
unsafe {
// We iterate forward and backwards through the manipulated lists
// to make sure pointers in both directions are still ok.
let mut a = ListNode::new(5);
let mut b = ListNode::new(7);
let mut c = ListNode::new(31);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
let removed = list.remove_first().unwrap();
assert_clean(removed);
assert!(!list.is_empty());
let items: Vec<i32> = collect_list(list);
assert_eq!([7, 31].to_vec(), items);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
let removed = list.remove_first().unwrap();
assert_clean(removed);
assert!(!list.is_empty());
let items: Vec<i32> = collect_reverse_list(list);
assert_eq!([31, 7].to_vec(), items);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut b, &mut a]);
let removed = list.remove_first().unwrap();
assert_clean(removed);
assert!(!list.is_empty());
let items: Vec<i32> = collect_list(list);
assert_eq!([7].to_vec(), items);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut b, &mut a]);
let removed = list.remove_first().unwrap();
assert_clean(removed);
assert!(!list.is_empty());
let items: Vec<i32> = collect_reverse_list(list);
assert_eq!([7].to_vec(), items);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut a]);
let removed = list.remove_first().unwrap();
assert_clean(removed);
assert!(list.is_empty());
let items: Vec<i32> = collect_list(list);
assert!(items.is_empty());
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut a]);
let removed = list.remove_first().unwrap();
assert_clean(removed);
assert!(list.is_empty());
let items: Vec<i32> = collect_reverse_list(list);
assert!(items.is_empty());
}
}
#[test]
fn remove_last() {
unsafe {
// We iterate forward and backwards through the manipulated lists
// to make sure pointers in both directions are still ok.
let mut a = ListNode::new(5);
let mut b = ListNode::new(7);
let mut c = ListNode::new(31);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
let removed = list.remove_last().unwrap();
assert_clean(removed);
assert!(!list.is_empty());
let items: Vec<i32> = collect_list(list);
assert_eq!([5, 7].to_vec(), items);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
let removed = list.remove_last().unwrap();
assert_clean(removed);
assert!(!list.is_empty());
let items: Vec<i32> = collect_reverse_list(list);
assert_eq!([7, 5].to_vec(), items);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut b, &mut a]);
let removed = list.remove_last().unwrap();
assert_clean(removed);
assert!(!list.is_empty());
let items: Vec<i32> = collect_list(list);
assert_eq!([5].to_vec(), items);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut b, &mut a]);
let removed = list.remove_last().unwrap();
assert_clean(removed);
assert!(!list.is_empty());
let items: Vec<i32> = collect_reverse_list(list);
assert_eq!([5].to_vec(), items);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut a]);
let removed = list.remove_last().unwrap();
assert_clean(removed);
assert!(list.is_empty());
let items: Vec<i32> = collect_list(list);
assert!(items.is_empty());
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut a]);
let removed = list.remove_last().unwrap();
assert_clean(removed);
assert!(list.is_empty());
let items: Vec<i32> = collect_reverse_list(list);
assert!(items.is_empty());
}
}
#[test]
fn remove_by_address() {
unsafe {
let mut a = ListNode::new(5);
let mut b = ListNode::new(7);
let mut c = ListNode::new(31);
{
// Remove first
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
assert_eq!(true, list.remove(&mut a));
assert_clean((&mut a).into());
// a should be no longer there and can't be removed twice
assert_eq!(false, list.remove(&mut a));
assert_eq!(Some((&mut b).into()), list.head);
assert_eq!(Some((&mut c).into()), b.next);
assert_eq!(Some((&mut b).into()), c.prev);
let items: Vec<i32> = collect_list(list);
assert_eq!([7, 31].to_vec(), items);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
assert_eq!(true, list.remove(&mut a));
assert_clean((&mut a).into());
// a should be no longer there and can't be removed twice
assert_eq!(false, list.remove(&mut a));
assert_eq!(Some((&mut c).into()), b.next);
assert_eq!(Some((&mut b).into()), c.prev);
let items: Vec<i32> = collect_reverse_list(list);
assert_eq!([31, 7].to_vec(), items);
}
{
// Remove middle
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
assert_eq!(true, list.remove(&mut b));
assert_clean((&mut b).into());
assert_eq!(Some((&mut c).into()), a.next);
assert_eq!(Some((&mut a).into()), c.prev);
let items: Vec<i32> = collect_list(list);
assert_eq!([5, 31].to_vec(), items);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
assert_eq!(true, list.remove(&mut b));
assert_clean((&mut b).into());
assert_eq!(Some((&mut c).into()), a.next);
assert_eq!(Some((&mut a).into()), c.prev);
let items: Vec<i32> = collect_reverse_list(list);
assert_eq!([31, 5].to_vec(), items);
}
{
// Remove last
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
assert_eq!(true, list.remove(&mut c));
assert_clean((&mut c).into());
assert!(b.next.is_none());
assert_eq!(Some((&mut b).into()), list.tail);
let items: Vec<i32> = collect_list(list);
assert_eq!([5, 7].to_vec(), items);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
assert_eq!(true, list.remove(&mut c));
assert_clean((&mut c).into());
assert!(b.next.is_none());
assert_eq!(Some((&mut b).into()), list.tail);
let items: Vec<i32> = collect_reverse_list(list);
assert_eq!([7, 5].to_vec(), items);
}
{
// Remove first of two
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut b, &mut a]);
assert_eq!(true, list.remove(&mut a));
assert_clean((&mut a).into());
// a should be no longer there and can't be removed twice
assert_eq!(false, list.remove(&mut a));
assert_eq!(Some((&mut b).into()), list.head);
assert_eq!(Some((&mut b).into()), list.tail);
assert!(b.next.is_none());
assert!(b.prev.is_none());
let items: Vec<i32> = collect_list(list);
assert_eq!([7].to_vec(), items);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut b, &mut a]);
assert_eq!(true, list.remove(&mut a));
assert_clean((&mut a).into());
// a should be no longer there and can't be removed twice
assert_eq!(false, list.remove(&mut a));
assert_eq!(Some((&mut b).into()), list.head);
assert_eq!(Some((&mut b).into()), list.tail);
assert!(b.next.is_none());
assert!(b.prev.is_none());
let items: Vec<i32> = collect_reverse_list(list);
assert_eq!([7].to_vec(), items);
}
{
// Remove last of two
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut b, &mut a]);
assert_eq!(true, list.remove(&mut b));
assert_clean((&mut b).into());
assert_eq!(Some((&mut a).into()), list.head);
assert_eq!(Some((&mut a).into()), list.tail);
assert!(a.next.is_none());
assert!(a.prev.is_none());
let items: Vec<i32> = collect_list(list);
assert_eq!([5].to_vec(), items);
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut b, &mut a]);
assert_eq!(true, list.remove(&mut b));
assert_clean((&mut b).into());
assert_eq!(Some((&mut a).into()), list.head);
assert_eq!(Some((&mut a).into()), list.tail);
assert!(a.next.is_none());
assert!(a.prev.is_none());
let items: Vec<i32> = collect_reverse_list(list);
assert_eq!([5].to_vec(), items);
}
{
// Remove last item
let mut list = LinkedList::new();
add_nodes(&mut list, &mut [&mut a]);
assert_eq!(true, list.remove(&mut a));
assert_clean((&mut a).into());
assert!(list.head.is_none());
assert!(list.tail.is_none());
let items: Vec<i32> = collect_list(list);
assert!(items.is_empty());
}
{
// Remove missing
let mut list = LinkedList::new();
list.add_front(&mut b);
list.add_front(&mut a);
assert_eq!(false, list.remove(&mut c));
}
}
}
}