1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
//! An asynchronously awaitable event for signalization between tasks
use crate::{
intrusive_double_linked_list::{LinkedList, ListNode},
utils::update_waker_ref,
NoopLock,
};
use core::pin::Pin;
use futures_core::{
future::{FusedFuture, Future},
task::{Context, Poll, Waker},
};
use lock_api::{Mutex, RawMutex};
/// Tracks how the future had interacted with the event
#[derive(PartialEq)]
enum PollState {
/// The task has never interacted with the event.
New,
/// The task was added to the wait queue at the event.
Waiting,
/// The task has been polled to completion.
Done,
}
/// Tracks the WaitForEventFuture waiting state.
/// Access to this struct is synchronized through the mutex in the Event.
struct WaitQueueEntry {
/// The task handle of the waiting task
task: Option<Waker>,
/// Current polling state
state: PollState,
}
impl WaitQueueEntry {
/// Creates a new WaitQueueEntry
fn new() -> WaitQueueEntry {
WaitQueueEntry {
task: None,
state: PollState::New,
}
}
}
/// Internal state of the `ManualResetEvent` pair above
struct EventState {
is_set: bool,
waiters: LinkedList<WaitQueueEntry>,
}
impl EventState {
fn new(is_set: bool) -> EventState {
EventState {
is_set,
waiters: LinkedList::new(),
}
}
fn reset(&mut self) {
self.is_set = false;
}
fn set(&mut self) {
if self.is_set != true {
self.is_set = true;
// Wakeup all waiters
// This happens inside the lock to make cancellation reliable
// If we would access waiters outside of the lock, the pointers
// may no longer be valid.
// Typically this shouldn't be an issue, since waking a task should
// only move it from the blocked into the ready state and not have
// further side effects.
// Use a reverse iterator, so that the oldest waiter gets
// scheduled first
self.waiters.reverse_drain(|waiter| {
if let Some(handle) = waiter.task.take() {
handle.wake();
}
waiter.state = PollState::Done;
});
}
}
fn is_set(&self) -> bool {
self.is_set
}
/// Checks if the event is set. If it is this returns immediately.
/// If the event isn't set, the WaitForEventFuture gets added to the wait
/// queue at the event, and will be signalled once ready.
/// This function is only safe as long as the `wait_node`s address is guaranteed
/// to be stable until it gets removed from the queue.
unsafe fn try_wait(
&mut self,
wait_node: &mut ListNode<WaitQueueEntry>,
cx: &mut Context<'_>,
) -> Poll<()> {
match wait_node.state {
PollState::New => {
if self.is_set {
// The event is already signaled
wait_node.state = PollState::Done;
Poll::Ready(())
} else {
// Added the task to the wait queue
wait_node.task = Some(cx.waker().clone());
wait_node.state = PollState::Waiting;
self.waiters.add_front(wait_node);
Poll::Pending
}
}
PollState::Waiting => {
// The WaitForEventFuture is already in the queue.
// The event can't have been set, since this would change the
// waitstate inside the mutex. However the caller might have
// passed a different `Waker`. In this case we need to update it.
update_waker_ref(&mut wait_node.task, cx);
Poll::Pending
}
PollState::Done => {
// We have been woken up by the event.
// This does not guarantee that the event is still set. It could
// have been reset it in the meantime.
Poll::Ready(())
}
}
}
fn remove_waiter(&mut self, wait_node: &mut ListNode<WaitQueueEntry>) {
// WaitForEventFuture only needs to get removed if it has been added to
// the wait queue of the Event. This has happened in the PollState::Waiting case.
if let PollState::Waiting = wait_node.state {
// Safety: Due to the state, we know that the node must be part
// of the waiter list
if !unsafe { self.waiters.remove(wait_node) } {
// Panic if the address isn't found. This can only happen if the contract was
// violated, e.g. the WaitQueueEntry got moved after the initial poll.
panic!("Future could not be removed from wait queue");
}
wait_node.state = PollState::Done;
}
}
}
/// A synchronization primitive which can be either in the set or reset state.
///
/// Tasks can wait for the event to get set by obtaining a Future via `wait`.
/// This Future will get fulfilled when the event has been set.
pub struct GenericManualResetEvent<MutexType: RawMutex> {
inner: Mutex<MutexType, EventState>,
}
// The Event is can be sent to other threads as long as it's not borrowed
unsafe impl<MutexType: RawMutex + Send> Send
for GenericManualResetEvent<MutexType>
{
}
// The Event is thread-safe as long as the utilized Mutex is thread-safe
unsafe impl<MutexType: RawMutex + Sync> Sync
for GenericManualResetEvent<MutexType>
{
}
impl<MutexType: RawMutex> core::fmt::Debug
for GenericManualResetEvent<MutexType>
{
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("ManualResetEvent").finish()
}
}
impl<MutexType: RawMutex> GenericManualResetEvent<MutexType> {
/// Creates a new ManualResetEvent in the given state
pub fn new(is_set: bool) -> GenericManualResetEvent<MutexType> {
GenericManualResetEvent {
inner: Mutex::<MutexType, EventState>::new(EventState::new(is_set)),
}
}
/// Sets the event.
///
/// Setting the event will notify all pending waiters.
pub fn set(&self) {
self.inner.lock().set()
}
/// Resets the event.
pub fn reset(&self) {
self.inner.lock().reset()
}
/// Returns whether the event is set
pub fn is_set(&self) -> bool {
self.inner.lock().is_set()
}
/// Returns a future that gets fulfilled when the event is set.
pub fn wait(&self) -> GenericWaitForEventFuture<MutexType> {
GenericWaitForEventFuture {
event: Some(self),
wait_node: ListNode::new(WaitQueueEntry::new()),
}
}
unsafe fn try_wait(
&self,
wait_node: &mut ListNode<WaitQueueEntry>,
cx: &mut Context<'_>,
) -> Poll<()> {
self.inner.lock().try_wait(wait_node, cx)
}
fn remove_waiter(&self, wait_node: &mut ListNode<WaitQueueEntry>) {
self.inner.lock().remove_waiter(wait_node)
}
}
/// A Future that is resolved once the corresponding ManualResetEvent has been set
#[must_use = "futures do nothing unless polled"]
pub struct GenericWaitForEventFuture<'a, MutexType: RawMutex> {
/// The ManualResetEvent that is associated with this WaitForEventFuture
event: Option<&'a GenericManualResetEvent<MutexType>>,
/// Node for waiting at the event
wait_node: ListNode<WaitQueueEntry>,
}
// Safety: Futures can be sent between threads as long as the underlying
// event is thread-safe (Sync), which allows to poll/register/unregister from
// a different thread.
unsafe impl<'a, MutexType: RawMutex + Sync> Send
for GenericWaitForEventFuture<'a, MutexType>
{
}
impl<'a, MutexType: RawMutex> core::fmt::Debug
for GenericWaitForEventFuture<'a, MutexType>
{
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("GenericWaitForEventFuture").finish()
}
}
impl<'a, MutexType: RawMutex> Future
for GenericWaitForEventFuture<'a, MutexType>
{
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
// It might be possible to use Pin::map_unchecked here instead of the two unsafe APIs.
// However this didn't seem to work for some borrow checker reasons
// Safety: The next operations are safe, because Pin promises us that
// the address of the wait queue entry inside MutexLocalFuture is stable,
// and we don't move any fields inside the future until it gets dropped.
let mut_self: &mut GenericWaitForEventFuture<MutexType> =
unsafe { Pin::get_unchecked_mut(self) };
let event = mut_self
.event
.expect("polled WaitForEventFuture after completion");
let poll_res = unsafe { event.try_wait(&mut mut_self.wait_node, cx) };
if let Poll::Ready(()) = poll_res {
// The event was set
mut_self.event = None;
}
poll_res
}
}
impl<'a, MutexType: RawMutex> FusedFuture
for GenericWaitForEventFuture<'a, MutexType>
{
fn is_terminated(&self) -> bool {
self.event.is_none()
}
}
impl<'a, MutexType: RawMutex> Drop
for GenericWaitForEventFuture<'a, MutexType>
{
fn drop(&mut self) {
// If this WaitForEventFuture has been polled and it was added to the
// wait queue at the event, it must be removed before dropping.
// Otherwise the event would access invalid memory.
if let Some(ev) = self.event {
ev.remove_waiter(&mut self.wait_node);
}
}
}
// Export a non thread-safe version using NoopLock
/// A [`GenericManualResetEvent`] which is not thread-safe.
pub type LocalManualResetEvent = GenericManualResetEvent<NoopLock>;
/// A [`GenericWaitForEventFuture`] for [`LocalManualResetEvent`].
pub type LocalWaitForEventFuture<'a> = GenericWaitForEventFuture<'a, NoopLock>;
#[cfg(feature = "std")]
mod if_std {
use super::*;
// Export a thread-safe version using parking_lot::RawMutex
/// A [`GenericManualResetEvent`] implementation backed by [`parking_lot`].
pub type ManualResetEvent = GenericManualResetEvent<parking_lot::RawMutex>;
/// A [`GenericWaitForEventFuture`] for [`ManualResetEvent`].
pub type WaitForEventFuture<'a> =
GenericWaitForEventFuture<'a, parking_lot::RawMutex>;
}
#[cfg(feature = "std")]
pub use self::if_std::*;